General Information

Database accession: MF7000559

Name: ADP-ribose pyrophosphatase of (E82Q mutant) with SO4 and Zn

PDB ID: 1v8w PDBe

Experimental method: X-ray (1.66 Å)

Assembly: Homodimer

Source organism: Thermus thermophilus

Primary publication of the structure:

Yoshiba S, Ooga T, Nakagawa N, Shibata T, Inoue Y, Yokoyama S, Kuramitsu S, Masui R
Structural insights into the Thermus thermophilus ADP-ribose pyrophosphatase mechanism via crystal structures with the bound substrate and metal.

(2004) J. Biol. Chem. 279: 37163-74

PMID: 15210687 PubMed

Abstract:

ADP-ribose pyrophosphatase (ADPRase) catalyzes the divalent metal ion-dependent hydrolysis of ADP-ribose to ribose 5'-phosphate and AMP. This enzyme plays a key role in regulating the intracellular ADP-ribose levels, and prevents nonenzymatic ADP-ribosylation. To elucidate the pyrophosphatase hydrolysis mechanism employed by this enzyme, structural changes occurring on binding of substrate, metal and product were investigated using crystal structures of ADPRase from an extreme thermophile, Thermus thermophilus HB8. Seven structures were determined, including that of the free enzyme, the Zn(2+)-bound enzyme, the binary complex with ADP-ribose, the ternary complexes with ADP-ribose and Zn(2+) or Gd(3+), and the product complexes with AMP and Mg(2+) or with ribose 5'-phosphate and Zn(2+). The structural and functional studies suggested that the ADP-ribose hydrolysis pathway consists of four reaction states: bound with metal (I), metal and substrate (II), metal and substrate in the transition state (III), and products (IV). In reaction state II, Glu-82 and Glu-70 abstract a proton from a water molecule. This water molecule is situated at an ideal position to carry out nucleophilic attack on the adenosyl phosphate, as it is 3.6 A away from the target phosphorus and almost in line with the scissile bond.


Function and Biology Annotations from the GeneOntology database. Only terms that fit at least two of the interacting proteins are shown.

Molecular function:

ADP-sugar diphosphatase activity ADP-sugar diphosphatase activity GeneOntology

bis(5'-adenosyl)-pentaphosphatase activity bis(5'-adenosyl)-pentaphosphatase activity GeneOntology

guanosine-3',5'-bis(diphosphate) 3'-diphosphatase activity guanosine-3',5'-bis(diphosphate) 3'-diphosphatase activity GeneOntology

metal ion binding metal ion binding GeneOntology

nucleotide binding nucleotide binding GeneOntology

UDP-sugar diphosphatase activity UDP-sugar diphosphatase activity GeneOntology

Biological process:

nucleoside phosphate metabolic process nucleoside phosphate metabolic process GeneOntology

ribose phosphate metabolic process ribose phosphate metabolic process GeneOntology

Cellular component:

cytosol cytosol GeneOntology

Structure Summary Structural annotations of the participating protein chains.

Entry contents: 2 distinct polypeptide molecules

Chains: A, A-2

Notes: All chains according to the most probable oligomerization state stored in PDBe were considered.

Number of unique protein segments: 1


Chain A

Name: ADP-ribose pyrophosphatase

Source organism: Thermus thermophilus

Length: 170 residues

Sequence:Sequence according to the corresponding UniProt protein segmentMGRVYYGGVERTYLYRGRILNLALEGRYEIVEHKPAVAVIALREGRMLFVRQMRPAVGLAPLEIPAGLIEPGEDPLEAARRELAEETGLSGDLTYLFSYFVSPGFTDEKTHVFLAENLKEVEAHPDEDEAIEVVWMRPEEALERHQRGEVEFSATGLVGVLYYHAFLRGR

UniProtKB AC: Q84CU3 (positions: 11-168) UniProt

Coverage: 92%

Chain A-2

Name: ADP-ribose pyrophosphatase

Source organism: Thermus thermophilus

Length: 170 residues

Sequence:Sequence according to the corresponding UniProt protein segmentMGRVYYGGVERTYLYRGRILNLALEGRYEIVEHKPAVAVIALREGRMLFVRQMRPAVGLAPLEIPAGLIEPGEDPLEAARRELAEETGLSGDLTYLFSYFVSPGFTDEKTHVFLAENLKEVEAHPDEDEAIEVVWMRPEEALERHQRGEVEFSATGLVGVLYYHAFLRGR

UniProtKB AC: Q84CU3 (positions: 11-168) UniProt

Coverage: 92%

Evidence Evidence demonstrating that the participating proteins are unstructured prior to the interaction and their folding is coupled to binding.

Representative domain in related structures: NUDIX domain

Evidence level: Indirect evidence

Evidence coverage: Only some parts of the structure participates in mutual synergistic folding.

Complex Evidence:

The authors claim that ADP-ribose pyrophosphatase forms a symmetric homodimer, wherein the two catalytic sites are formed by residues of both monomers, requiring dimerization through domain swapping for substrate recognition and catalytic activity (PMID:11323725). E. coli ADPRase elutes as a dimer in gel exclusion chromatography (PMID:11323725). The N-terminal subdomain (residues 1-54) mediates dimerization and is a strong candidate for MSF, while the C-terminal one is a folded Nudix domain. Other structures belonging to the same domain type also show features implying MSF: large relative interface, domain swapping and a lack of the monomeric form in gel filtration experiments (PMID:12906832, PMID:15210687).

Chain A:

N/A

Chain A-2:

N/A

Surface and contacts features:

Related Structure(s) Structures from the PDB that contain the same number of proteins, and the proteins from the two structures show a sufficient degree of pairwise similarity, i.e. they belong to the same UniRef90 cluster (the full proteins exhibit at least 90% sequence identity) and convey roughly the same region to their respective interactions (the two regions from the two proteins share a minimum of 70% overlap).

There are 38 related structures in the MFIB database:
The molecule viewer shows our modified stucture.

Download the CIF file (.cif)

Download this entry's XML file (.xml)

Download this entry's JSON file (.json)