Database accession: MF7000056
Name: ADP-ribose pyrophosphatase
PDB ID: 1g0s
Experimental method: X-ray (1.90 Å)
Assembly: Homodimer
Source organism: Escherichia coli
Primary publication of the structure:
Gabelli SB, Bianchet MA, Bessman MJ, Amzel LM
The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family.
(2001) Nat. Struct. Biol. 8: 467-72
PMID: 11323725
Abstract:
Regulation of cellular levels of ADP-ribose is important in preventing nonenzymatic ADP-ribosylation of proteins. The Escherichia coli ADP-ribose pyrophosphatase, a Nudix enzyme, catalyzes the hydrolysis of ADP-ribose to ribose-5-P and AMP, compounds that can be recycled as part of nucleotide metabolism. The structures of the apo enzyme, the active enzyme and the complex with ADP-ribose were determined to 1.9 A, 2.7 A and 2.3 A, respectively. The structures reveal a symmetric homodimer with two equivalent catalytic sites, each formed by residues of both monomers, requiring dimerization through domain swapping for substrate recognition and catalytic activity. The structures also suggest a role for the residues conserved in each Nudix subfamily. The Nudix motif residues, folded as a loop-helix-loop tailored for pyrophosphate hydrolysis, compose the catalytic center; residues conferring substrate specificity occur in regions of the sequence removed from the Nudix motif. This segregation of catalytic and recognition roles provides versatility to the Nudix family.
Molecular function:
ADP-ribose diphosphatase activity ADP-ribose diphosphatase activity
ADP-sugar diphosphatase activity ADP-sugar diphosphatase activity
magnesium ion binding magnesium ion binding
protein homodimerization activity protein homodimerization activity
pyrophosphatase activity pyrophosphatase activity
Biological process:
nucleoside phosphate metabolic process nucleoside phosphate metabolic process
response to heat response to heat
ribose phosphate metabolic process ribose phosphate metabolic process
Cellular component:
cytosol cytosol
Entry contents: 2 distinct polypeptide molecules
Chains: A, B
Notes: All chains according to the most probable oligomerization state stored in PDBe were considered.
Number of unique protein segments: 1
Name: ADP-ribose pyrophosphatase
Source organism: Escherichia coli
Length: 209 residues
Sequence:Sequence according to the corresponding UniProt protein segmentMLKPDNLPVTFGKNDVEIIARETLYRGFFSLDLYRFRHRLFNGQMSHEVRREIFERGHAAVLLPFDPVRDEVVLIEQIRIAAYDTSETPWLLEMVAGMIEEGESVEDVARREAIEEAGLIVKRTKPVLSFLASPGGTSERSSIMVGEVDATTASGIHGLADENEDIRVHVVSREQAYQWVEEGKIDNAASVIALQWLQLHHQALKNEWA
UniProtKB AC: Q93K97 (positions: 1-209)
Coverage: 100%
Name: ADP-ribose pyrophosphatase
Source organism: Escherichia coli
Length: 209 residues
Sequence:Sequence according to the corresponding UniProt protein segmentMLKPDNLPVTFGKNDVEIIARETLYRGFFSLDLYRFRHRLFNGQMSHEVRREIFERGHAAVLLPFDPVRDEVVLIEQIRIAAYDTSETPWLLEMVAGMIEEGESVEDVARREAIEEAGLIVKRTKPVLSFLASPGGTSERSSIMVGEVDATTASGIHGLADENEDIRVHVVSREQAYQWVEEGKIDNAASVIALQWLQLHHQALKNEWA
UniProtKB AC: Q93K97 (positions: 8-209)
Coverage: 96%
Representative domain in related structures: NUDIX domain
Evidence level: Indirect evidence
Evidence coverage: Only some parts of the structure participates in mutual synergistic folding.
Complex Evidence:
The authors claim that ADP-ribose pyrophosphatase forms a symmetric homodimer, wherein the two catalytic sites are formed by residues of both monomers, requiring dimerization through domain swapping for substrate recognition and catalytic activity (PMID:11323725). E. coli ADPRase elutes as a dimer in gel exclusion chromatography (PMID:11323725). The N-terminal subdomain (residues 1-54) mediates dimerization and is a strong candidate for MSF, while the C-terminal one is a folded Nudix domain. Other structures belonging to the same domain type also show features implying MSF: large relative interface, domain swapping and a lack of the monomeric form in gel filtration experiments (PMID:12906832, PMID:15210687).
Chain A:
N/A
Chain B:
N/A
Surface and contacts features:
Download the CIF file (.cif)
Download this entry's XML file (.xml)
Download this entry's JSON file (.json)