General Information

Database accession: MF7000749

Name: MitoNEET with Furosemide

PDB ID: 6de9 PDBe

Experimental method: X-ray (1.95 Å)

Assembly: Homodimer

Source organism: Homo sapiens

Primary publication of the structure:

Geldenhuys WJ, Long TE, Saralkar P, Iwasaki T, Nuñez RAA, Nair RR, Konkle ME, Menze MA, Pinti MV, Hollander JM, Hazlehurst LA, Robart AR
Crystal structure of the mitochondrial protein mitoNEET bound to a benze-sulfonide ligand.

(2019) Commun Chem 2:

PMID: 32382661 PubMed

Abstract:

MitoNEET (gene cisd1) is a mitochondrial outer membrane [2Fe-2S] protein and is a potential drug target in several metabolic diseases. Previous studies have demonstrated that mitoNEET functions as a redox-active and pH-sensing protein that regulates mitochondrial metabolism, although the structural basis of the potential drug binding site(s) remains elusive. Here we report the crystal structure of the soluble domain of human mitoNEET with a sulfonamide ligand, furosemide. Exploration of the high-resolution crystal structure is used to design mitoNEET binding molecules in a pilot study of molecular probes for use in future development of mitochondrial targeted therapies for a wide variety of metabolic diseases, including obesity, diabetes and neurodegenerative diseases such as Alzheimer's and Parkinson's disease.


Function and Biology Annotations from the GeneOntology database. Only terms that fit at least two of the interacting proteins are shown.

Molecular function:

2 iron, 2 sulfur cluster binding 2 iron, 2 sulfur cluster binding GeneOntology

identical protein binding identical protein binding GeneOntology

L-cysteine transaminase activity L-cysteine transaminase activity GeneOntology

metal ion binding metal ion binding GeneOntology

protein homodimerization activity protein homodimerization activity GeneOntology

pyridoxal phosphate binding pyridoxal phosphate binding GeneOntology

Biological process:

protein maturation by [2Fe-2S] cluster transfer protein maturation by [2Fe-2S] cluster transfer GeneOntology

regulation of autophagy regulation of autophagy GeneOntology

regulation of cellular respiration regulation of cellular respiration GeneOntology

Cellular component:

mitochondrial outer membrane mitochondrial outer membrane GeneOntology

mitochondrion mitochondrion GeneOntology

Structure Summary Structural annotations of the participating protein chains.

Entry contents: 2 distinct polypeptide molecules

Chains: A, A-2

Notes: All chains according to the most probable oligomerization state stored in PDBe were considered.

Number of unique protein segments: 1


Chain A

Name: CDGSH iron-sulfur domain-containing protein 1

Source organism: Homo sapiens

Length: 108 residues

Sequence:Sequence according to the corresponding UniProt protein segmentMSLTSSSSVRVEWIAAVTIAAGTAAIGYLAYKRFYVKDHRNKAMINLHIQKDNPKIVHAFDMEDLGDKAVYCRCWRSKKFPFCDGAHTKHNEETGDNVGPLIIKKKET

UniProtKB AC: Q9NZ45 (positions: 32-105) UniProt

Coverage: 68%

Chain A-2

Name: CDGSH iron-sulfur domain-containing protein 1

Source organism: Homo sapiens

Length: 108 residues

Sequence:Sequence according to the corresponding UniProt protein segmentMSLTSSSSVRVEWIAAVTIAAGTAAIGYLAYKRFYVKDHRNKAMINLHIQKDNPKIVHAFDMEDLGDKAVYCRCWRSKKFPFCDGAHTKHNEETGDNVGPLIIKKKET

UniProtKB AC: Q9NZ45 (positions: 32-105) UniProt

Coverage: 68%

Evidence Evidence demonstrating that the participating proteins are unstructured prior to the interaction and their folding is coupled to binding.

Representative domain in related structures: Iron-binding zinc finger CDGSH type

Evidence level: Indirect evidence

Evidence coverage: The full structure participates in mutual synergistic folding.

Complex Evidence:

Size exclusion chromatography measurements suggest that mitoNEET33–108 protein exists as a dimer in solution (PMID:17905743). The monomers associate along their full length to form an intertwined structure with an extensive interface (PMID:17766439).

Chain A:

N/A

Chain A-2:

N/A

Surface and contacts features:

Related Structure(s) Structures from the PDB that contain the same number of proteins, and the proteins from the two structures show a sufficient degree of pairwise similarity, i.e. they belong to the same UniRef90 cluster (the full proteins exhibit at least 90% sequence identity) and convey roughly the same region to their respective interactions (the two regions from the two proteins share a minimum of 70% overlap).

There are 14 related structures in the MFIB database:
The molecule viewer shows our modified stucture.

Download the CIF file (.cif)

Download this entry's XML file (.xml)

Download this entry's JSON file (.json)