General Information

Database accession: MF7000214

Name: MitoNEET

PDB ID: 2r13 PDBe

Experimental method: X-ray (1.80 Å)

Assembly: Homodimer

Source organism: Homo sapiens

Primary publication of the structure:

Hou X, Liu R, Ross S, Smart EJ, Zhu H, Gong W
Crystallographic studies of human MitoNEET.

(2007) J. Biol. Chem. 282: 33242-33246

PMID: 17905743 PubMed

Abstract:

MitoNEET was identified as an outer mitochondrial membrane protein that can potentially bind the anti-diabetes drug pioglitazone. The crystal structure of the cytoplasmic mitoNEET (residues 33-108) is determined in this study. The structure presents a novel protein fold and contains a [2Fe-2S] cluster-binding domain. The [2Fe-2S] cluster is coordinated to the protein by Cys-72, Cys-74, Cys-83, and His-87 residues. This coordination is also novel compared with the traditional [2Fe-2S] cluster coordinated by four cysteines or two cysteines and two histidines. The cytoplasmic mitoNEET forms homodimers in solution and in crystal. The dimerization is mainly mediated by hydrophobic interactions as well as hydrogen bonds coordinated by two water molecules binding at the interface. His-87 residue, which plays an important role in the coordination of the [2Fe-2S] cluster, is exposed to the solvent on the dimer surface. It is proposed that mitoNEET dimer may interact with other proteins via the surface residues in close proximity to the [2Fe-2S] cluster.


Function and Biology Annotations from the GeneOntology database. Only terms that fit at least two of the interacting proteins are shown.

Molecular function:

2 iron, 2 sulfur cluster binding 2 iron, 2 sulfur cluster binding GeneOntology

identical protein binding identical protein binding GeneOntology

L-cysteine transaminase activity L-cysteine transaminase activity GeneOntology

metal ion binding metal ion binding GeneOntology

protein homodimerization activity protein homodimerization activity GeneOntology

pyridoxal phosphate binding pyridoxal phosphate binding GeneOntology

Biological process:

protein maturation by [2Fe-2S] cluster transfer protein maturation by [2Fe-2S] cluster transfer GeneOntology

regulation of autophagy regulation of autophagy GeneOntology

regulation of cellular respiration regulation of cellular respiration GeneOntology

Cellular component:

mitochondrial outer membrane mitochondrial outer membrane GeneOntology

mitochondrion mitochondrion GeneOntology

Structure Summary Structural annotations of the participating protein chains.

Entry contents: 2 distinct polypeptide molecules

Chains: A, A-2

Notes: All chains according to the most probable oligomerization state stored in PDBe were considered.

Number of unique protein segments: 1


Chain A

Name: CDGSH iron-sulfur domain-containing protein 1

Source organism: Homo sapiens

Length: 108 residues

Sequence:Sequence according to the corresponding UniProt protein segmentMSLTSSSSVRVEWIAAVTIAAGTAAIGYLAYKRFYVKDHRNKAMINLHIQKDNPKIVHAFDMEDLGDKAVYCRCWRSKKFPFCDGAHTKHNEETGDNVGPLIIKKKET

UniProtKB AC: Q9NZ45 (positions: 33-105) UniProt

Coverage: 67%

Chain A-2

Name: CDGSH iron-sulfur domain-containing protein 1

Source organism: Homo sapiens

Length: 108 residues

Sequence:Sequence according to the corresponding UniProt protein segmentMSLTSSSSVRVEWIAAVTIAAGTAAIGYLAYKRFYVKDHRNKAMINLHIQKDNPKIVHAFDMEDLGDKAVYCRCWRSKKFPFCDGAHTKHNEETGDNVGPLIIKKKET

UniProtKB AC: Q9NZ45 (positions: 33-105) UniProt

Coverage: 67%

Evidence Evidence demonstrating that the participating proteins are unstructured prior to the interaction and their folding is coupled to binding.

Representative domain in related structures: Iron-binding zinc finger CDGSH type

Evidence level: Indirect evidence

Evidence coverage: The full structure participates in mutual synergistic folding.

Complex Evidence:

Size exclusion chromatography measurements suggest that mitoNEET33–108 protein exists as a dimer in solution (PMID:17905743). The monomers associate along their full length to form an intertwined structure with an extensive interface (PMID:17766439).

Chain A:

N/A

Chain A-2:

N/A

Surface and contacts features:

Related Structure(s) Structures from the PDB that contain the same number of proteins, and the proteins from the two structures show a sufficient degree of pairwise similarity, i.e. they belong to the same UniRef90 cluster (the full proteins exhibit at least 90% sequence identity) and convey roughly the same region to their respective interactions (the two regions from the two proteins share a minimum of 70% overlap).

There are 14 related structures in the MFIB database:
The molecule viewer shows our modified stucture.

Download the CIF file (.cif)

Download this entry's XML file (.xml)

Download this entry's JSON file (.json)