Database accession: MF7000715
Name: CzrA (Staphylococcus aureus)
PDB ID: 2m30
Experimental method: NMR
Assembly: Homodimer
Source organism: Staphylococcus aureus
Primary publication of the structure:
Chakravorty DK, Wang B, Lee CW, Guerra AJ, Giedroc DP, Merz KM
Solution NMR refinement of a metal ion bound protein using metal ion inclusive restrained molecular dynamics methods.
(2013) J. Biomol. NMR 56: 125-37
PMID: 23609042
Abstract:
Correctly calculating the structure of metal coordination sites in a protein during the process of nuclear magnetic resonance (NMR) structure determination and refinement continues to be a challenging task. In this study, we present an accurate and convenient means by which to include metal ions in the NMR structure determination process using molecular dynamics (MD) simulations constrained by NMR-derived data to obtain a realistic and physically viable description of the metal binding site(s). This method provides the framework to accurately portray the metal ions and its binding residues in a pseudo-bond or dummy-cation like approach, and is validated by quantum mechanical/molecular mechanical (QM/MM) MD calculations constrained by NMR-derived data. To illustrate this approach, we refine the zinc coordination complex structure of the zinc sensing transcriptional repressor protein Staphylococcus aureus CzrA, generating over 130 ns of MD and QM/MM MD NMR-data compliant sampling. In addition to refining the first coordination shell structure of the Zn(II) ion, this protocol benefits from being performed in a periodically replicated solvation environment including long-range electrostatics. We determine that unrestrained (not based on NMR data) MD simulations correlated to the NMR data in a time-averaged ensemble. The accurate solution structure ensemble of the metal-bound protein accurately describes the role of conformational sampling in allosteric regulation of DNA binding by zinc and serves to validate our previous unrestrained MD simulations of CzrA. This methodology has potentially broad applicability in the structure determination of metal ion bound proteins, protein folding and metal template protein-design studies.
Molecular function:
DNA binding DNA binding
DNA-binding transcription factor activity DNA-binding transcription factor activity
identical protein binding identical protein binding
metal ion binding metal ion binding
Biological process: not assigned
Cellular component: not assigned
Entry contents: 2 distinct polypeptide molecules
Chains: A, B
Notes: All chains according to the most probable oligomerization state stored in PDBe were considered.
Number of unique protein segments: 1
Name: Transcriptional regulator
Source organism: Staphylococcus aureus
Length: 106 residues
Sequence:Sequence according to the corresponding UniProt protein segmentMSEQYSEINTDTLERVTEIFKALGDYNRIRIMELLSVSEASVGHISHQLNLSQSNVSHQLKLLKSVHLVKAKRQGQSMIYSLDDIHVATMLKQAIHHANHPKESGL
UniProtKB AC: O85142 (positions: 9-103)
Coverage: 89%
Name: Transcriptional regulator
Source organism: Staphylococcus aureus
Length: 106 residues
Sequence:Sequence according to the corresponding UniProt protein segmentMSEQYSEINTDTLERVTEIFKALGDYNRIRIMELLSVSEASVGHISHQLNLSQSNVSHQLKLLKSVHLVKAKRQGQSMIYSLDDIHVATMLKQAIHHANHPKESGL
UniProtKB AC: O85142 (positions: 9-103)
Coverage: 89%
Representative domain in related structures: Winged helix DNA-binding domain (ArsR family) transcriptional regulator
Evidence level: Indirect evidence
Evidence coverage: Only some parts of the structure participates in mutual synergistic folding.
Complex Evidence:
The N-terminal portion of the ArsR family transcriptional regulator, Mj223, is a helix-turn-helix (HTH) winged-helix DNA-binding motif. The C-terminal region of the protein is composed of two leucine-rich α-helices (H5 and H6) that form an antiparallel four-helix bundle with a large, hydrophobic interaction surface on dimerization that forms the hydrophobic core of the dimer (PMID:12471609, PMID:9466913). The C-terminal dimerization subdomain is a nice case of MSF. The protein is a dimer in solution (Dynamic light scattering) (PMID:12471609).
Chain A:
N/A
Chain B:
N/A
Surface and contacts features:
Download the CIF file (.cif)
Download this entry's XML file (.xml)
Download this entry's JSON file (.json)