Database accession: MF7000540
Name: NfsA (Escherichia coli)
PDB ID: 7q0o
Experimental method: X-ray (0.96 Å)
Assembly: Homodimer
Source organism: Escherichia coli
Primary publication of the structure:
White SA, Christofferson AJ, Grainger AI, Day MA, Jarrom D, Graziano AE, Searle PF, Hyde EI
The 3D-structure, kinetics and dynamics of the E. coli nitroreductase NfsA with NADP provide glimpses of its catalytic mechanism.
(2022) FEBS Lett. :
PMID: 35648111
Abstract:
Nitroreductases activate nitroaromatic antibiotics and cancer prodrugs to cytotoxic hydroxylamines and reduce quinones to quinols. Using steady-state and stopped-flow kinetics we show that the E. coli nitroreductase NfsA is 20-50 fold more active with NADPH than with NADH and that product release may be rate-limiting. The crystal structure of NfsA with NADP+ shows that a mobile loop forms a phosphate-binding pocket. The nicotinamide ring and nicotinamide ribose are mobile, as confirmed in molecular dynamics (MD) simulations. We present a model of NADPH bound to NfsA. Only one NADP+ is seen bound to the NfsA dimers, and MD simulations show that binding of a second NADP(H) cofactor is unfavourable, suggesting that NfsA and other members of this protein superfamily may have a half-of-sites mechanism.
Molecular function:
chromate reductase activity chromate reductase activity
FMN binding FMN binding
NAD(P)H dehydrogenase (quinone) activity NAD(P)H dehydrogenase (quinone) activity
protein homodimerization activity protein homodimerization activity
Biological process: not assigned
Cellular component:
cytosol cytosol
Entry contents: 2 distinct polypeptide molecules
Chains: A, A-2
Notes: All chains according to the most probable oligomerization state stored in PDBe were considered.
Number of unique protein segments: 1
Name: Oxygen-insensitive NADPH nitroreductase
Source organism: Escherichia coli
Length: 240 residues
Sequence:Sequence according to the corresponding UniProt protein segmentMTPTIELICGHRSIRHFTDEPISEAQREAIINSARATSSSSFLQCSSIIRITDKALREELVTLTGGQKHVAQAAEFWVFCADFNRHLQICPDAQLGLAEQLLLGVVDTAMMAQNALIAAESLGLGGVYIGGLRNNIEAVTKLLKLPQHVLPLFGLCLGWPADNPDLKPRLPASILVHENSYQPLDKGALAQYDEQLAEYYLTRGSNNRRDTWSDHIRRTIIKESRPFILDYLHKQGWATR
UniProtKB AC: P17117 (positions: 1-240)
Coverage: 100%
Name: Oxygen-insensitive NADPH nitroreductase
Source organism: Escherichia coli
Length: 240 residues
Sequence:Sequence according to the corresponding UniProt protein segmentMTPTIELICGHRSIRHFTDEPISEAQREAIINSARATSSSSFLQCSSIIRITDKALREELVTLTGGQKHVAQAAEFWVFCADFNRHLQICPDAQLGLAEQLLLGVVDTAMMAQNALIAAESLGLGGVYIGGLRNNIEAVTKLLKLPQHVLPLFGLCLGWPADNPDLKPRLPASILVHENSYQPLDKGALAQYDEQLAEYYLTRGSNNRRDTWSDHIRRTIIKESRPFILDYLHKQGWATR
UniProtKB AC: P17117 (positions: 1-240)
Coverage: 100%
Representative domain in related structures: Nitroreductase family
Evidence level: Indirect evidence
Evidence coverage: The full structure participates in mutual synergistic folding.
Complex Evidence:
Authors claim that the homodimeric NAD(P)H nitroreductase is a highly intertwined dimer with the FMN binding site lying at the dimer interface (PMID:18241886). Other structures belonging to the nitroreductase family also have an extensive interaction surface wherein a large hydrophobic solvent-accessible surface becomes buried upon dimer formation, suggesting that the monomers would be unstable on their own (PMID:16229462, PMID:19436071). Domain-swapping is also typical, where the extended C-terminal region extensively interacts with the core domain of the neighbouring monomer, forming an interlocked dimer (PMID:34473996, PMID:19436071, PMID:8885832).
Chain A:
N/A
Chain A-2:
N/A
Surface and contacts features:
Download the CIF file (.cif)
Download this entry's XML file (.xml)
Download this entry's JSON file (.json)